

Gain and Range Control on the HMC1520

Product Application Note

Contents

1	Introduction	3
2	Full Scale Control	Error! Bookmark not defined.
3	Programmable Gain Function	3

Tables

Table 1 Full Scale Control	. 3
Table 2 Full Scale Range Adjustment	. 3
Table 3 Programmable Gain	. 4
Table 4 Coarse Gain Function - dB Step & Gain Factor	. 5
Table 5 Fine Programmable Gain	. 5
Table 6 Fine Gain Setting	. 6

1 Introduction

The HMCAD1520 has programmable Full Scale input control and well as a coarse and fine programmable gain function. These provide a flexible on-chip signal attenuation system and simplify front end design. The following sections detail the operation of these features.

2 Full Scale Control

For the HMCAD1520, the typical FSR, the Differential input full scale range, is 2 Vpp. This can be adjusted by an internal 6 bit DAC controlled by the fs_cntrl register. This adjustment is an analog one to the input of all four converters. The maximum range adjustment is \pm 10%. The values for the adjustment range are approximate but the DAC is guaranteed to be monotonic. The 6 bits used in the fs_cntrl register are detailed below.

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
fs_cntrl <5:0>	Fine adjust ADC full scale range	0% change											х	x	х	x	х	х	0x55

Table 1 Full Scale Control

Table 2 shows how the register settings correspond to the full-scale range. Changing the value by one step adjusts the full-scale input range by approximately 0.3%. The range can be adjusted from approximately 1.8 Vpp to 2.194 Vpp.

fs_cntrl<5:0>	Full-scale range adjustment
111111	9.7 %
111110	9.4 %
100001	0.3 %
100000	0%
011111	-0.3 %
000001	-9,7%
000000	-10,0%

 Table 2 Full Scale Range Adjustment

3 Programmable Gain Function

The Programmable Gain is a digital function and has both coarse and fine settings. The coarse gain of each channel can be individually set using a 4 bit code, cgain<3:0>, in registers 0x2A and 0x2B as shown below. The gain can be set in dB steps or in gain factor steps (per Table 4) depending upon the setting of register cgain_cfg. When cgain_cfg = 0, a gain in dB steps is enabled. Otherwise, if cgain_cfg = 1, a gain factor is enabled.

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address
coarse_gain _cfg																		х	0x33
fine_gain_en	Enable use of fine gain.	Disabled															х		enec.
cgain4_ch1 <3:0>	Programmable coarse gain channel 1 in a Quad Channel setup.	1x gain													х	x	x	x	
cgain4_ch2 <3:0>	Programmable coarse gain channel 2 in a Quad Channel setup.	1x gain									x	x	x	x					0x2A
cgain4_ch3 <3:0>	dain channel 3 in a						х	x	x	x									UXZA
cgain4_ch4 <3:0>	Programmable coarse gain channel 4 in a Quad Channel setup.	1x gain	х	х	х	х													
cgain2_ch1 <3:0>	Programmable coarse gain channel 1 in a Dual Channel setup.	1x gain													х	x	x	x	
cgain2_ch2 <3:0>	Programmable coarse gain channel 2 in a Dual Channel setup.	1x gain									x	x	х	х					0x2B
cgain1_ch1 <3:0>	Programmable coarse gain channel 1 in a Single Channel setup.	1x gain					х	х	Х	х									

 Table 3 Programmable Gain

cgain*<3:0>	cgain_cfg	Implemented gain [dB]	cgain_cfg	Implemented gain factor [x]
0000	0	0	1	1
0001	0	1	1	1.25
0010	0	2	1	2
0011	0	3	1	2.5
0100	0	4	1	4
0101	0	5	1	5
0110	0	6	1	8
0111	0	7	1	10
1000	0	8	1	12.5
1001	0	9	1	16

HMCAD1520 IMD Measurements Product Application Note

1010	0	10	1	20
1011	0	11	1	25
1100	0	12	1	32
1101	0	Not used	1	50
1110	0	Not used	1	Not used
1111	0	Not used	1	Not used

The fine gain function is implemented for each ADC branch to adjust the fine gain errors between the branches. The gain in implemented by the registers below and is controlled by *fgain_branch* as defined in table 24. For the high speed interleaved modes, there will be no missing codes when using the fine gain control. To enable the fine gain control, the register *fine-gain_en* must be set to '1'.

Name	Description	Default	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex Address	
fgain_branch1< 6:0>	Programmable fine gain for branch1.	1x / 0dB gain										х	х	х	х	х	х	х	0x34	
fgain_branch2< 6:0>	Programmable fine gain for branch 2.	1x / 0dB gain		x x x x x x x x					0,34											
fgain_branch3< 6:0>	Programmable fine gain for branch 3.	1x / 0dB gain										х	х	х	х	х	х	х	0x25	
fgain_branch4< 6:0>	Programmable fine gain for branch 4.	1x / 0dB gain		x	x	x	х	х	x	x									0x35	
fgain_branch5< 6:0>	Programmable fine gain for branch 5.	1x / 0dB gain										х	х	х	х	х	х	х	0x26	
fgain_branch6< 6:0>	Programmable fine gain for branch 6.	1x / 0dB gain		x	х	х	х	х	x	х									— 0x36	
fgain_branch7< 6:0>	Programmable fine gain for branch 7.	1x / 0dB gain										х	х	х	х	х	х	х	0x37	
fgain_branch8< 6:0>	Programmable fine gain for branch 8.	1x / 0dB gain		х	х	х	х	х	x	х									0.57	

 Table 5 Fine Programmable Gain

		fgain_i	branch	x<6:0>			Arithmetic Function	Implemented Gain (x)	Gain (dB)
0	1	1	1	1	1	1	$OUT = (1 + 2^{-8} + 2^{-9} + 2^{-10} + 2^{-11} + 2^{-12} + 2^{-13}) * IN$	1.0077	0.0665
0	1	1	1	1	1	0	$OUT = (1 + 2^{-8} + 2^{-9} + 2^{-10} + 2^{-11} + 2^{-12}) * IN$	1.0076	0.0655
0	1	1	1	1	0	1	$OUT = (1 + 2^{-8} + 2^{-9} + 2^{-10} + 2^{-11} + 2^{-13}) *$ IN	1.0074	0.0644
0	1	1	1	1	0	0	$OUT = (1 + 2^{-8} + 2^{-9} + 2^{-10} + 2^{-11}) * IN$	1.0073	0.0634
	1						<i>(</i> 0 (0)		
0	0	0	0	0	1	1	$OUT = (1 + 2^{-12} + 2^{-13}) * IN$	1.0004	0.0031
0	0	0	0	0	1	0	$OUT = (1 + 2^{-12}) * IN$	1.0002	0.0021
0	0	0	0	0	0	1	$OUT = (1 + 2^{-13}) * IN$	1.0001	0.0010
0	0	0	0	0	0	0	OUT = IN	1.0000	0.0000
1	1	1	1	1	1	1	OUT = IN	1.0000	0.0000
1	1	1	1	1	1	0	$OUT = (1 - 2^{-13}) * IN$	0.9999	-0.0011
1	1	1	1	1	0	1	$OUT = (1 - 2^{-12}) * IN$	0.9998	-0.0021
1	1	1	1	1	0	0	$OUT = (1 - 2^{-12} - 2^{-13}) * IN$	0.9996	-0.0032
	1					1			
1	0	0	0	0	1	1	$OUT = (1 - 2^{-8} - 2^{-9} - 2^{-10} - 2^{-11}) * IN$	0.9927	-0.0639
1	0	0	0	0	1	0	$OUT = (1 - 2^{-8} - 2^{-9} - 2^{-10} - 2^{-11} - 2^{-13}) * IN$	0.9926	-0.0649
1	0	0	0	0	0	1	$OUT = (1 - 2^{-8} - 2^{-9} - 2^{-10} - 2^{-11} - 2^{-12}) * IN$	0.9924	-0.0660
1	0	0	0	0	0	0	$OUT = (1 - 2^{-8} - 2^{-9} - 2^{-10} - 2^{-11} - 2^{-12} - 2^{-13}) * IN$	0.9923	-0.0670

Table 6 Fine Gain Setting